
Prediction of Styrene Conversion of Polystyrene/Natural Rubber
Graft Copolymerization Using Reaction Conditions: Central Composite
Design versus Artificial Neural Networks

Kittima Aroonsingkarat, Nanthiya Hansupalak
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Department of Chemical Engineering,
Faculty of Engineering, Kasetsart University, Bangkok, Thailand
Correspondence to: N. Hansupalak (E-mail: fengnyh@ku.ac.th)

ABSTRACT: Gross copolymer or the total product of graft copolymerization of polystyrene (PS) and rubber, prepared via emulsion

polymerization using a redox initiator, is used to investigate the utilization of central composite design and artificial neural network

(ANN) approaches in correlating the graft copolymerization conditions to the monomer conversion. The conditions were manipu-

lated by changing four factors: reaction temperature and time, percentage of deproteinized natural rubber (DPNR) in the rubber mix-

ture also containing NR, and amount of chain transfer agent. For DPNR preparation, the incorporation of ultrasound energy into a

deproteinizing method (i.e., urea treatment) was preexamined. A shorter reaction time, a lower total nitrogen content, and no

agglomeration of rubber particles suggest the success of the incorporation. Results exhibit that the relationship between those factors

and the response can be better described by the ANN model, which is further proved to be an excellent tool for the prediction of the

conversion at other reaction conditions. In addition, the thermal behavior of gross copolymer is similar to its parents, the rubber and

neat PS, but more to the former owing to the larger amount of rubber component. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000:

000–000, 2012
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INTRODUCTION

Natural rubber (NR) from Hevea brasiliensis is an elastomer of

interest herein due to its abundance in Thailand and easy deri-

vation from a renewable source. Due to its high elasticity, NR is

widely used in the production of, for instance, medical and

household gloves.1 In addition, owing to rubber (NR, polybuta-

diene, etc.) having double bonds in its backbone, rubber can

graft with vinyl monomer, yielding a remarkable new polymer

with a broader range of application. For instance, grafting a

small amount of glycidyl methacrylate (GMA) onto NR using

emulsion polymerization produces a polymer blend of GMA

and NR polymers and GMA/NR graft copolymer that occur

during the polymerization, exhibiting improved tensile strength

and modulus with insignificant loss in elongation at break,

which has led to the use of this polymer blend as seal, adhesive,

and coating.2 The improved properties are ascribed to the exis-

tence of vinyl polymer possessing better properties and of the

graft copolymer in the polymer blend, which helps reduce the

interfacial energy between the vinyl polymer and the rubber

phases, and thus it can be said that that graft copolymer acts as

a compatibilizer.3–6 Better mechanical properties also happen

for the styrene/NR blend which are compatibilized by using sty-

rene/NR graft copolymer, of which modulus and hardness are

higher than those of neat NR.7

To graft styrene and NR using free-radical emulsion polymeriza-

tion, redox initiator is the most suitable to initiate the graft

copolymerization because it not only works well at high pH (the

presence of ammonia in NR latex) but also is insensitive to the

existence of oxygen in the system.8 Literature data indicate that

the styrene conversion can be controlled by the graft copolymer-

ization conditions—e.g., reaction time and temperature, amount

of chain transfer agent (CTA), type of NR (deproteinized

or NR), concentrations of monomers and initiators, and mono-

mer-to-rubber ratio.8–10 Reaction mechanisms are generally

developed to probe relationships between monomer conversion

and polymerization conditions (e.g., concentrations of mono-

mers, initiators and CTAs).9,11–13 There are also other (less com-

plicated) means to investigate the relationships without truly

understanding the reaction mechanisms, such as response surface

methods (RSMs) and artificial neural networks (ANNs).8–10,14–16

VC 2012 Wiley Periodicals, Inc.
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An RSM can be applied to determine an expression (typically

polynomial function) that elucidates how a dependent variable

(response) is affected by those significant factors over some

specified domain. Moreover, the magnitude of coefficients in

the expression corresponds to the significant level of effects of

both main and interaction process factors on the responses.17–19

In addition, the RSM can be used to optimize process variables

to obtain the maximum or minimum response.20,21 Box–

Behnken and central composite designs (CCD) are examples of

RSMs that have been used in studying the optimization, interac-

tions, and influences of conditions of graft copolymerization on

response values, such as degree of grafting and graft yield and

mechanical properties.22–25

In case the relationship between a response and factors is very

complex and cannot be described by a mere polynomial func-

tion, ANNs are considered as an alternative approach to the

RSMs. An ANN, in a metaphorical sense, is composed of a bio-

logical brain having two sets of nervous systems acting as input

and output streams. Through the nervous system, experimental

data input and output values are given to the ‘‘brain.’’ The brain

scrutinizes the relationship between the input and output data

and finally obtains parameters that are hidden in the brain and

cannot be extracted. Though a mathematical model cannot be

obtained from the approach, the ANN approach is known for

its reliability in predicting response values, high resistance to

noisy or missing data, and capability to handle a number of

variables with unknown interactions.26 Many researchers have

successfully used this approach to investigate many polymeric

systems that possess a nonlinear or complex relationship

between the independent and dependent variables.14–16

The graft copolymerization of styrene and rubber using a redox

initiator and free-radical emulsion polymerization was of inter-

est herein. We attempted to explore the relationship between

the styrene conversion and the graft copolymerization condi-

tions, that is, reaction temperature and time, weight percent of

deproteinized NR (DPNR) in the rubber mixture, and amount

of CTA, as they have reportedly affected the conversion of vinyl

monomer, for example, styrene and methyl methacrylate.8,27,28

DPNR that is NR with low nitrogen content was chosen to be

one of factors herein because many research studies addressed

its contribution to higher monomer conversion as proteins,

which are adsorbed on rubber particles, can compete with

monomer for radicals.28–31 Thus, instead of initiating polymer-

ization of monomer, some radicals react with proteins. Those

previous works, however, conducted experiments using only

pure NR or pure DPNR in the graft copolymerization.

Pukkate et al.32 claimed that the ability of urea to denature pro-

teins accounts for the deproteinization of NR and that the reac-

tion between NR and urea for 1 h with continuous stirring can

yield a total nitrogen content as low as 0.02%, which is compa-

rable to using proteolytic enzyme in protein removal which

takes longer time (12 h). In addition, it has been documented

that ultrasound energy can denature proteins in a solution

through large pressure and temperature gradient and high shear

forces due to the collapse of bubbles, which have been previ-

ously formed by the ultrasonic wave radiated into the solu-

tion.33–36 Moreover, our unpublished results indicate the unsuit-

ability of using the ultrasound energy (produced from an

ultrasonic bath) alone without mechanical mixing during the

reaction between urea and NR; the raised temperature of the

liquid owing to the ultrasound energy and poor heat transfer

give rise to the occurrence of agglomeration of NR particles.

Due to the three aforementioned reasons, the present work

aimed at the incorporation of the ultrasound energy and the

method of Pukkate et al.32 in protein removal, which might

yield more satisfying results.

As a result, this current work focused on the preparation of

DPNR using ultrasound energy incorporated with the method

of Pukkate et al.32 and the development of mathematical expres-

sions that correlate the copolymerization conditions to the cor-

responding styrene conversion using the CCD approach and

ANN approach with the back-propagation algorithm. The com-

parison between these two approaches was later discussed in

terms of quality of fit and predictability. It should be noted that

the developed model can be used to predict the conversion

faster and at no additional cost, compared to running an addi-

tional experiment. The examination of thermal behavior of the

gross copolymer—i.e., the total product of the graft copolymer-

ization of styrene and rubber : PS/rubber graft copolymer, un-

grafted PS, and ungrafted rubber—was also conducted in com-

parison with that of pure rubber and neat PS.

EXPERIMENTAL

Materials

High ammonia NR latex with a solid content of 60% was pur-

chased from Thailand Natural Rubber Research Institute (Bang-

kok, Thailand). Styrene monomer (Merck, Bangkok, Thailand;

purity �99%) was purified by washing several times with an

aqueous solution of 15% sodium hydroxide (NaOH). The redox

initiator, cumene hydroperoxide (CHPO; purity �80%), and

the activator agent, tetraethylene pentamine (TEPA; purity

�85%), as well as potassium hydroxide for pH control and so-

dium dodecyl sulfate solution (SDS; purity �90%) used as an

emulsifier, were purchased from Fluka (Bangkok, Thailand). All

chemicals were analytical grade and used as received. All solu-

tions were prepared by using deionized water.

Preparation of DPNR

DPNR was prepared in a container containing NR latex, which

then reacted with 0.1% urea in the presence of 1% SDS. During a

15 min long reaction, the mixture was sonicated by using a Bran-

son 2510 E-MT ultrasonic bath (Danbury, CT) and simultane-

ously continuously stirred using an overhead mixer, followed by

removing denatured proteins using centrifugation at 10,000 rpm

in the presence of 1% SDS solution. The obtained mixture consti-

tuting DPNR was immediately used in the graft copolymerization.

The reduction in protein amount in NR latex was measured by

using two methods: (1) the measurement of the total nitrogen

content of rubber using the Kjeldahl method in accordance with

ASTM D3533-90 (Standard Test Method for Rubber-Nitrogen

Content) and (2) Fourier transform infrared Spectroscopy

(FTIR) using a Perkin–Elmer Spectrum-1 FTIR Spectrometer

(Bangkok, Thailand). To confirm the suitability of using ultra-

sound energy in combination with the method of Pukkate
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et al.,32 a control experiment was conducted, in which only an

overhead mixer was used during the reaction between NR and

urea (this is the method Pukkate et al.32 for DPNR prepara-

tion). In addition, morphology of rubber particles prepared dif-

ferently was characterized by using a JEM- 2100 transmission

electron microscope (Joel, Bangkok, Thailand) with specimen

heating holder (up to 800�C).

Preparation of Graft copolymerization of Styrene and

Rubber Latex

Following the recipe in Table I which is slightly different from

literature,10 the NR-DPNR mixture in a certain ratio was

purged with nitrogen for 30 min before the subsequent addition

of styrene, n-dodecyl mercaptan (used as a CTA), and TEPA.

The mixture, maintained at pH 10 and a certain temperature,

was continuously stirred at 400 rpm for 1 h to allow rubber

particles to swell with styrene. At a stirring speed of 400

rpm, on the addition of CHPO, the reaction instantaneously

began and was stopped at a certain time by dropping hydroqui-

none. The gross polymer was dried in a conventional oven at

60�C for 24 h and in a vacuum oven at 60�C until no weight

change was observed. Subsequently, the styrene conversion was

estimated using the following equation:

Styrene conversionð%Þ
¼ weight of monomers polymerized

weight of monomers initially charged
� 100 ð1Þ

It should be noted that the grafting between styrene and rubber

was confirmed by 1H NMR (results not shown here) in a Varian

INOVA 500 MHz NMR spectrometer (Bangkok, Thailand).

Before the characterization, free polystyrene (PS) and free rub-

ber in the gross polymer were washed out by Soxhlet extraction

using methyl ethyl ketone for 24 h, followed by petroleum ether

for another 24 h. Each dried sample was dissolved in CDCl3.

Thermal Behavior of Polymers

The thermal behavior was studied by the thermogravimetric

analysis (TGA) using an SDT 2960 simultaneous DSC/TGA ana-

lyzer (Perkin Elmer). Temperature was raised under a nitrogen

atmosphere from room temperature to 800�C at a constant

heating rate of 10�C/min. Four samples tested are neat NR,

pure rubber (weight ratio of DPNR : NR ¼ 25 : 75), neat PS,

and gross copolymer (Run 1 in Table II was chosen).

Modeling the Relationship between the Styrene Conversion

and Process Factors

Using CCD Approach. CCD was used to design experiments for

the four process factors : reaction temperature and time, %DPNR

in the rubber mixture, and CTA amount; five level values (coded

as �a, �1, 0, þ1, þa) were provided for every factor, as shown

in Table III. There are four repeated runs at the central levels. The

levels of these factors were chosen based on literature.10

By using regression analysis, multiple regression equations were

developed [eq. (2)], followed by statistical analyses, which

include analysis of variance (ANOVA) and F-test for testing sig-

nificance of overall models and each coefficient. All of these

were carried out by a trial version Minitab 15.

Y ¼ b0 þ
Xn¼4

i¼1

biXi þ
Xn¼4

i¼1

biiX
2
i þ

Xn¼4

i¼1

Xn¼4

j¼1
j 6¼i

bijXiXj (2)

where n corresponds to the number of factors, Y is the response

variable (tensile strength or abrasion), and Xi is independent

Table I. Recipe for Emulsion Copolymerization of Styrene and Rubber

Organic component (rubber : styrene ¼ 76 : 24, g) 100

Deionized water (g) 305

Isopropanol (g) 7.6

SDS (g) 1.14

TEPA (g) 0.24

CHPO (g) 0.19

Hydroquinone (g) 0.83

Table II. The Experimental Design and Corresponding Values of the

Response

Run A B C D
Styrene
conversion (%)

1 þ1 –1 –1 þ1 42.27

2 þ1 –1 þ1 –1 10.50

3 –1 –1 –1 –1 17.53

4 þ1 þ1 –1 –1 41.08

5 –1 –1 þ1 þ1 14.48

6 –1 þ1 þ1 –1 17.10

7 –1 þ1 –1 þ1 7.52

8 þ1 þ1 þ1 þ1 29.35

9 –1 –1 –1 þ1 24.40

10 –1 –1 þ1 –1 16.93

11 –1 þ1 –1 –1 36.53

12 –1 þ1 þ1 þ1 22.45

13 þ1 –1 –1 –1 47.82

14 þ1 –1 þ1 þ1 19.66

15 þ1 þ1 –1 þ1 11.43

16 þ1 þ1 þ1 –1 28.03

17 0 0 0 0 8.01

18 0 0 0 0 18.77

19 0 0 0 0 7.27

20 0 0 0 0 4.47

21 –a 0 0 0 3.31

22 þa 0 0 0 24.70

23 0 –a 0 0 1.10

24 0 þa 0 0 27.13

25 0 0 –a 0 14.81

26 0 0 þa 0 12.72

27 0 0 0 –a 33.34

28 0 0 0 þa 12.57
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variable. bi is the linear coefficient, whereas bii and bij are squared

and interaction coefficients for each variables Xi and for each pair

(Xi and Xj), respectively. The mathematical model in eq. (2),

comprising linear, quadratic, and interaction terms, explains the

relationship between independent and dependent variables.

Using ANN Approach. In brief, ANN has basic elements, which

are three layers (so-called input, hidden, and output layers),

weights, bias, and transfer functions.37–39 It should be noted

that there can be more than one hidden layer, but usually a net-

work containing one hidden layer and numerous neurons is

enough to perform a task. Each neuron, or node, in the input

layer corresponding to each independent variable sends a

weighted vector of the variable to all neurons in the hidden

layer. In case of one hidden layer, then the vector put through a

transfer function (e.g., sigmoid function, log function, etc.) is

sent to all neurons in the output layer. The number of neurons

in the output layer actually equals to that of dependent

variables.

To train a network, a back-propagation feed-forward algorithm

is used. Weight and bias values between each layer pair must be

corrected to minimize the root mean square error (RMSE)

between the output elements from the output layer (ypre) and

experimental (yexp) values of a dependent variable [eq. (3)]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

m¼1 ðypre;m � yexp;mÞ2
p

s
(3)

where p denotes the total number of data points. The correction

is first made to the weight and bias before the output layer and

then propagates backward to the first ones. After finishing the

correction in the backward direction, the whole process is

repeated (i.e., starting from the transmission of input vectors

from the input layer to the hidden layer and that output vectors

from the hidden layer to the output layer) until an acceptable

error (i.e., lower than the property measurement error) is

reached.

After the training, the obtained network is validated and tested

using different datasets. Obtaining the best network may require

changes in the transfer function, training function, learning

rate, and the number of neurons in the hidden layer.

In this report, an ANN model, correlating the polymerization

conditions and styrene conversion, was developed by using the

same datasets used in the CCD studies, which were normalized

in the range 0.05–0.95. However, for the replication at the cen-

ter point, a single number (being the average of those four rep-

licates) is used; that is, there are 25 runs instead of 28 runs (see

Table II). The whole process of training, validating, and testing

a model was conducted by using NNTOOL box in MATLAB.

The performance quality of the obtained network is determined

by RMSE, a plot of predicted versus observed normalized val-

ues, and the value of determination coefficient (R2).

RESULTS AND DISCUSSION

Characterization of the Prepared DPNR

As shown in Table IV, using both an overhead mixer and ultra-

sound energy during the reaction between urea and NR yields a

lower total nitrogen amount of DPNR than that of the method

of Pukkate et al.32 and does not induce agglomeration (see Fig-

ure 1), as occurred when we tried applying ultrasound energy

more directly to the rubber mixture using an ultrasonic probe.

Note that the trace of SDS added to stabilize rubber particles

can be detected in Figure 1 (b,c).

It is noteworthy that the protein content in NR product cannot

be exactly quantified by measuring nitrogen content using the

Kjeldahl method because the value includes nitrogen derived

from phospholipids and proteins adsorbed on rubber par-

ticles.40 Consequently, FTIR spectroscopy is required to confirm

the reduction in protein amount. In Figure 2, all three FTIR

spectra have peaks in the range of 3290–3320 cm�1, suggesting

the presence of short- and long-peptide chains as assigned by

Pukkate et al.32,41,42 Comparing three samples, the lowest peak

height, indicating the lowest protein level, is from DPNR pre-

pared by using both an overhead mixer and ultrasound energy

during the reaction between urea and NR.

Thus, both the total nitrogen amount and FTIR results unani-

mously confirm the suitability of ultrasound energy in combina-

tion with the method of Pukkate et al.32 for NR deproteiniza-

tion. Although the ultrasound is a high-energy consumption

technique, evident advantages of using ultrasound energy can

Table IV. Total Nitrogen Content of NR and DPNR Prepared Differently

Sample Total nitrogen content (wt %)

NR 0.30

DPNR (only overhead mixer) 0.04

DPNR (both overhead mixer
and ultrasound energy)

0.02

Table III. Design Factor Levels for the CCD (from �a to þa levels)

Factor Name

Coded level

�a �1 0 þ1 þa

A Reaction temperature (�C) 40 50 60 70 80

B Reaction time (h) 3 4 5 6 7

C DPNR in the rubber mixture (%) 0 25 50 75 100

D CTA (phr)a 0 0.25 0.50 0.75 1

aphr is short for parts per hundred parts rubber by mass.
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be summarized as follows: the reaction time can be reduced

four times; the obtained total nitrogen content is lower; more

low- and high-molecular weight proteins (i.e., the disappearance

of the peak in the range of 3290–3320 cm�1 in Figure 2) can be

removed, which results in less protein amount in the competi-

tion for free radicals. In addition, it should be noted that pro-

teins with MW � 5–110 kDa are potent allergens, causing IgE-

mediated allergic reactions to human on one’s exposure to NR

products and possibly leading to severe anaphylactic reac-

tions.43,44 In consequence, the technique, which has the poten-

tial to remove potent allergens, may be applied to applications

where the allergen elimination is of concern.

Regression Modeling by Using CCD Approach

The regression analysis of the experimental data in Table II gives

estimated regression coefficients [bi, bii, bij as in eq. (2)], as

listed in Table V. The P-value corresponds to the T-value, which

is the ratio of a coefficient and its corresponding standard error

(results not shown). When the P-value is less than 0.05, this

indicates 95% confidence that the variation does not occur by

chance. As a result, a model term with P < 0.05 is considered

significant and has a significant effect on the response.45

Figure 1. TEM images of rubber particles: (a) NR particles, (b) DPNR particles prepared by using an overhead mixer, and (c) DPNR particles prepared

by using both an overhead mixer and ultrasound energy.

Figure 2. FTIR spectra for (a) NR, (b) DPNR prepared by using an over-

head mixer, and (c) DPNR prepared by using both an overhead mixer

and ultrasound energy.
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In Table V, only A and D2 have P < 0.05 and, hence, both terms

are considered significant to the response. However, the results

are different from the ANOVA results in Table VI, in which lin-

ear and quadratic terms, as well as interaction terms, are con-

sidered insignificant (P > 0.05). Also, both R2 and adjusted R2

values of the response model are low, confirming a poor fit.

Furthermore, Figure 3 shows the scatter around the line with a

slope of one, implying the poor-fitting model for the response.

As a result, it can be said that the relationship between the

monomer conversion and the reaction conditions is too compli-

cated and cannot be simply described by the quadratic polyno-

mial equation developed from the CCD approach. Similar

results were reported in Sresungsuwan and Hansupalak,46 in

which the CCD approach cannot sufficiently model the relation-

ship between mechanical properties of gross copolymer and the

reaction conditions.

Modeling by Using ANN Approach

The topology details of the model that gives the best perform-

ance are shown in Table VII. Four neurons in the input layer

correspond to the four factors (reaction temperature and time,

%DPNR, and amount of CTA), and one neuron in the output

layer matches one response, the monomer conversion. Only one

hidden layer containing five neurons was found to be enough

to yield a model with the best performance. The optimum net-

work uses a log-sigmoid function as the transfer function and

the gradient descent approach (GDA) with adaptive learning

rate as the training function. Small value of RMSE that is lower

than the measurement error calculated from repeated experi-

ments (0.104 for normalized styrene conversion) justifies the

best performance of the model. Furthermore, the quality of fit

can be visualized in Figure 4. Most data are clustered around

the line with a slope of one, which is in agreement with the

high R2 value.

A comparison between models obtained from the CCD and

ANN approaches is made by comparing R2 and RMSE values. It

is clear that the ANN model gives a higher R2 value (see Table

V and the footnote to Table VII for the CCD and ANN

approaches, respectively) and a lower RMSE value than the

CCD model (0.338 for normalized styrene conversion), which

signifies the suitability of the ANN model over the CCD model

in explaining the relationship between the styrene conversion

and the reaction conditions.

Table V. Results of Regression Analysis and Corresponding T- and P-

values of the Quadratic Polynomial for Styrene Conversion from the CCD

Approach

Model term Coefficienta T-value P-value

Constant 111.474 1.916 0.078

A –1.213 2.355 0.035

B –15.975 1.055 0.311

C –1.141 –1.508 0.155

D –40.975 –1.736 0.106

A � A 0.024 1.181 0.259

B � B 2.452 1.195 0.254

C � C 0.004 1.152 0.270

D � D 74.600 2.272 0.041

A � B –0.129 –0.513 0.617

A � C –0.010 –0.995 0.338

A � D –0.137 –0.136 0.894

B � C 0.177 1.761 0.102

B � D –15.005 –1.493 0.159

C � D 0.707 1.758 0.102

Adjusted R2 0.336

R2 0.680

aEstimated regression coefficients are for input data in uncoded units
(values are in the same ranges shown in Table III).

Table VI. ANOVA for the Fitted Quadratic Polynomial for Styrene

Conversion

Source F P-value

Regression 1.98 0.114

Linear 2.99 0.059

Quadratic 1.50 0.258

Interaction 1.62 0.220

Figure 3. Predicted versus observed values of styrene conversion (%)

obtained from the CCD approach. The quadratic polynomial model used

for the prediction is listed in the figure.

Table VII. Details of the ANN Model for Predicting Styrene Conversion

Number of neurons (input : hidden : output) 4 : 5 : 1

Transfer function Log-Sigmoid

Training function GDA

Learning rate 0.01

Epochs 15,000

RMSEa 0.0548

R2, a 0.944

aBoth RMSE and R2 presented here were calculated by using dimension-
less (or normalized) data. By using dimensional data, R2 is 0.99997.
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As stated previously, the total number of data to establish a net-

work depends on the complex of the input–output relation-

ship.38,46 Some results in the literature acquiring good-fitting

ANN models use the total number of data between 10 and 35

for polymer systems. Delfa et al.15 successfully used about 15–30

data to establish three models for solid content, Mooney viscos-

ity, and polydispersity of styrene–butadiene rubber. Dhib and

Hyson14 even used a number of data as low as 10 to develop

models predicting monomer conversion and molecular weight

of PS as a function of time. Sresungsuwan and

Hansupalak46 used 25 data to correlate the tensile strength val-

ues of styrene/NR blend compatibilized by PS-g-rubber copoly-

mer to reaction conditions.

Due to the optimal reaction conditions—giving the highest

monomer conversion—corresponding to Run 13 in Table II, it

is not necessary to optimize the monomer conversion. Hence,

we decided to test the obtained ANN model by carrying out

five repeated experiments at reaction conditions that are not

listed in Table II, which are reaction temperature of 70�C, reac-
tion time of 4.5 h, %DPNR of 25, and CTA amount of 0.4 phr.

Accordingly, the obtained ANN model gives the target value of

styrene conversion equal to 45.22%, whereas the polynomial

equation from the CCD approach gives that of 30.56%. The

percentage of monomer conversion value from confirmed

experiments is 45.16 6 0.97, which is in agreement with the

target value obtained from the ANN model, suggesting the

excellent quality of the model in prediction of conversion.

Thermal Behavior of Polymers

TGA was performed to compare the thermal behavior of Run 1

to its parents, that is, the rubber (a mixture of 25% DPNR and

75% NR) and PS. It is important to note that, in the inset in

Figure 5, the TGA curves of the pure rubber and the NR super-

pose well and are in good agreement with literature, which con-

ducted TGA for neat NR.47 Same results can still be observed

when increasing DPNR content to 100% (data not shown). The

identical thermal stability is due to polyisoprene being the most

dominant component in these samples.

The inset in Figure 5 clearly exhibits different thermal behaviors

for the pure rubber and neat PS. The pure rubber decomposes

one time during the temperature range 300–400�C, whereas

neat PS decomposes twice: the first stage of weight loss due to

the loss of benzene rings occurs during the range 200–350�C,
and the second stage due to the decomposition of the polymer’s

backbone occurs during the range 400–450�C. These observa-

tions for neat PS were also noted by Mathew et al.47

In the same inset (Figure 5), the thermal behavior of Run 1

looks more similar to that of the pure rubber. However, the

DTGA curve of Run 1 in Figure 5 reveals three distinct peaks,

which can clearly be ascribed to thermal behavior of rubber and

PS components. As a result of the addition principle for poly-

mer blends, the similar thermal behavior between Run 1 and

the pure rubber may be explained by the large quantity of rub-

ber component in Run 1.47–49

CONCLUSIONS

This work mainly focuses on (1) the incorporation of ultra-

sound energy into the method of Pukkate et al. for DPNR prep-

aration and (2) the development of a mathematical expression

that describes the relationship between the styrene conversion

and the graft copolymerization conditions, that is, reaction tem-

perature and time, weight percent of DPNR in the rubber mix-

ture, and amount of CTA.

In the first part, with the application of urea, continuous stir-

ring using an overhead mixer, and ultrasound energy, the

deproteinization of NR can be achieved four times faster than

the method of Pukkate et al., in addition to lower total nitrogen

content and no agglomeration occurrence, suggesting that the

ultrasound energy from an ultrasonic bath cooperates well with

urea in eliminating proteins.

In the second part, the relationship between the response

and these four factors was studied through two different

Figure 4. Predicted versus observed values of styrene conversion (%)

obtained from the ANN approach.

Figure 5. DTGA curves for pure rubber, neat PS, and PS/rubber blend

compatibilized with PS/rubber graft copolymer (Run 1 in Table II). Note

that DTGA curve of neat NR is identical to that of pure rubber. TGA

weight losses for all samples are given in the inset.
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approaches: CCD and ANN. The latter approach, with lower

RMSE value, high R2 value, and less scattering in the predicted-

against-observed-values plot, is proved to be able to predict the

response much better than the former, thus suggesting that the

relationship is nonlinear and complex such that it cannot be

simply explained by a quadratic polynomial model derived from

the CCD approach. Furthermore, when predicting the monomer

conversion at other reaction conditions, it was found that the

ANN model gives results in better agreement with experimental

values, and thus the better model. In addition, the thermal

behavior of gross copolymer follows the addition principle for

polymer blends: its behavior is similar to both parents, but

more to the larger rubber component.
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